tible to conformational changes, which is consistent with the expected effect of the cyclohexo groups on ring rigidity.

The $\log K$ values in Table III for the reactions of $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$. and Pb^{2+} with II, IIIa, and IIIb are much larger than the corresponding values for the reactions of these metal ions with IV. ${ }^{17}$ In addition, the Pb^{2+} IV complex is reported to be less stable than the Ba^{2+}-IV complex, which is the opposite trend to that seen in Table III for II, IIIa, and IIIb. The results of Shchori et al. ${ }^{17}$ with IV suggest that the effect of substitution of two benzo groups on II is to markedly lower complex stability for bivalent, but not univalent (Figure 1) metal ions and to reverse the $\mathrm{Pb}^{2+}, \mathrm{Ba}^{2+}$ stability order. On the other hand, the data in Figure 2 generally show trends opposite to these for IIIa and IIIb when compared with II.

References and Notes

(1) Supported by National Science Foundation Grant GP-33536X and National Institutes of Health Grant GM 18811. Taken in part from the M.S. Thesis (1973) of B.L.H. and the Ph.D. Dissertation (1976) of R.E.T., Brigham Young University
(2) R. M. Izatt, D. J. Eatough, and J. J. Christensen, Struct. Bonding, 16, 161 (1973).
(3) J. M. Lehn, Struct. Bonding, 16, 1 (1973).
(4) Y. A. Ovchinnikov, V. T. Ivanov, and A. M. Shkrob, "Membrane-Active Complexones"', Elsevier, New York, N. Y., 1974.
(5) C. J. Pedersen and H. K. Frensdorff, Angew. Chem., 11, 16 (1972).
(6) C. Kappenstein, Bull. Soc. Chim. Fr., 89 (1974),
(7) J. J. Christensen, J. O. Hill, and R. M. Izatt, Science, 174, 459 (1971).
(8) R. M. Izatt, D. P. Nelson, J. H. Rytting, B. L. Haymore, and J. J. Christensen, J. Am. Chem. Soc., 93, 1619 (1971).
(9) Nomenclature is that proposed for these compounds by C. J. Pedersen, J. Am. Chem. Soc., 89, 7017 (1967).
(10) N. K. Dalley, D. E. Smith, R. M. Izatt, and J. J. Christensen, J. Chem. Soc., Chem. Commun., 90 (1972).
(11) D. E. Fenton, M. Mercer, and M. R. Truter, Biochem. Biophys. Res. Commun., 48, 10 (1972).
(12) N. K. Dalley, J. S. Smith, S. B. Larson, J. J. Christensen, and R. M. Izatt,
J. Chem. Soc., Chem. Commun., 43 (1975).
(13) M. R. Truter, Struct. Bond., 16, 71 (1973).
(14) A. Pullman. C. Giessner-Prettre, and Y. V. Kruglyak, Chem. Phys. Lett., 35, 156 (1975).
(15) H. K. Frensdorff, J. Am. Chem. Soc., 93. 600 (1971).
(16) J. J. Christensen, D. J. Eatough, and R. M. Izatt, Chem. Rev., 74, 351 (1974).
(17) E. Shchori, N. Nae, and J. Jagur-Grodzinski, J. Chem. Soc., Datton Trans., 2381 (1975).
(18) R. M. Izatt, B. L. Haymore, J. S. Bradshaw, and J. J. Christensen, Inorg. Chem., 14, 3132 (1975).
(19) J. J. Christensen, R. M. Izatt, and L. D. Hansen, Rev. Sci. Instrum, 36, 779 (1965).
(20) L. D. Hansen, R. M. Izatt, D. J. Eatough, T. E. Jensen, and J. J. Christensen, in Anal. Calorimetry, Proc. Symp. 3rd, 7-16 (1974).
(21) L. D. Hansen, R. M. Izatt, and J. J. Christensen, in "New Developments in Titrimetry", J. Jordan, Ed., Marcel Dekker, New York, N. Y.. 1974.
(22) L. D. Hansen, T. E. Jensen, S. Mayne, D. J. Eatough, R. M. Izatt, and J. J. Christensen, J. Chem. Thermodyn., 7, 919 (1975).
(23) J.J. Christensen, D. J. Eatough, J. Ruckman, and R. M. Izatt, Thermochim. Acta, 3, 203 (1972).
(24) D. J. Eatough, J. J. Christensen, and R. M. Izatt, Thermochim. Acta. 3. 219, 233 (1972).
(25) R. M. Costes, G. Folcher. N. Keller, P. Plurien, and P. Rigny, Inorg, Nucl. Chem. Lett., 11, 469 (1975); 11, 13 (1976); G. Bombieri, G. DePaoli, A. Cassol, and A. Immirzi, Inorg. Chim. Acta, 18, L23 (1976).
(26) L. H. Ahrens, Geochim. Cosmochim. Acta, 2, 155 (1952); R. Shannon and C. Prewitt, Acta Crystallogr., Sect. B, 25, 925 (1969).
(27) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 3d ed, Wiley-Interscience, New York, N.Y., 1972.
(28) G. Eisenman and S. J. Krasne in MTP Int. Rev. Sci, Biochem. Ser., 2, 27-59 (1975).
(29) L. Pauling. "The Nature of the Chemical Bond". Cornell University Press, lthaca, N.Y., 1960.
(30) I. Goldberg, Acta Cirystallogr., Sect. B, 31, 2592 (1975).
(31) A. Pullman and A. M. Armbruster, Int. J. Quantum Chem., 8s. 169 (1974).
(32) A. Puliman and A. M. Armbruster, Chem. Phys. Lett, 36,558 (1975).
(33) J. J. Christensen, D. P. Wrathall, and R. M. Izatt, Anal. Chem., 40,175 (1968). J. J. Christensen, D. P. Wrathall, J. O. Oscarson, and R. M. Izatt, Anal. Chem., 40, 1713 (1968).
(34) L. D. Hansen, R. M. Izatt, R. E. Terry, and J. J. Christensen, manuscript in preparation.
(35) R. M. Izatt, L. D. Hansen, D. J. Eatough, J. S. Bradshaw, and J. J. Christensen, Jerusalem Symp., Quantum Chem. Biochem., in press.

Calorimetric Titration Study of the Interaction of Some Uni- and Bivalent Cations with Benzo-15-crown-5, 18-Crown-6, Dibenzo-24-crown-8, and Dibenzo-27-crown-9 in Methanol-Water Solvents, at $25^{\circ} \mathrm{C}$ and $\mu=0.1^{1}$

R. M. Izatt,* R. E. Terry, D. P. Nelson, Y. Chan, D. J. Eatough, J. S. Bradshaw, L. D. Hansen, and J. J. Christensen
Contribution from the Departments of Chemistry and Chemical Engineering and No. 77 from the Institute for Thermochemical Studies, Brigham Young University, Provo, Utah 84602. Received May 10,1976

Abstract

The interaction between $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Pb^{2+} and the cyclic polyethers benzo-15-crown-5,18-crown-6, dibenzo-24-crown-8, and dibenzo-27-crown-9 in $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ solvents has been studied using a calorimetric titration procedure. $\log \beta_{i}, \Delta H_{i}$, and ΔS_{i} values are calculated in those instances where sufficient amounts of heat were produced. Complexes having 1:1 metal-ligand stoichiometry resulted with these ligands except for the Rb^{+}and K^{+}-benzo- $15 \cdot$ crown. 5 systems at 70 and $80 w t \% \mathrm{CH}_{3} \mathrm{OH}$, which were found to be $1: 2$. As the cyclic polyether ring size increases, the ΔS values for the $1: 1$ reaction of a given cation become more negative, suggesting increased ligand conformational change upon complex formation.

Following the initial observation of Pedersen ${ }^{2}$ that certain cyclic polyethers selectively complex cations, extensive research has been conducted on the ability of compounds of this class to complex univalent and bivalent metal ions. ${ }^{3}$ A striking result
of this work was the observation that in aqueous solution certain of the cyclic polyethers (e.g., 18 -crown-6) show marked cation selective behavior, while others (e.g., 15 -crown- 5^{4} and dicyclohexo-24-crown-8 ${ }^{5}$) do not. Also, stoichiometry other
than $1: 1$ is observed ${ }^{2 b-d .3}$ under certain conditions. For example, when the cation is much larger than the ligand cavity, $1: 2$ cation to ligand complexes may be formed.

In the present investigation, the interactions of several uniand bivalent cations with ligands I-IV in solvents of several $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{OH}$ compositions have been studied by a calorimetric titration procedure. $\log \beta_{i}, \Delta H_{i}$, and ΔS_{i} values are calculated in those experiments where sufficient heat was produced. These thermodynamic values are used to evaluate the following factors as they affect complex stability and/or the formation of complexes with other than 1:1 stoichiometry: (1) the composition of the solvent; (2) the ratio of cation diameter to polyether ring cavity diameter; (3) the number of potential cation coordination sites in the ring; and (4) the flexibility of the ring. These and other factors which determine the magnitude of $\log \beta_{i}$ values for the formation of cationcyclic polyether complexes have been presented and discussed. ${ }^{6-9}$

I
benzo-15-crown-5

II
18-crown-6

dibenzo-24-crown-8

dibenzo-27.crown-9

Experimental Section

Materials. The following chemicals were used in the study: NaCl , $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{BaCl} 2 \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Baker and Adamson, ACS reagent); KCl (Matheson, Coleman, and Bell, ACS reagent), RbCl (Apache Chemicals, 99.9%); CsCl (J. T. Baker Chemical Co., 99.9\%); $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Baker Analyzed reagent): $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, \mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (G. Frederick Smith Chemical Co., reagent); $\mathrm{Cd}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Alfa Inorganics); $\mathrm{NH}_{4} \mathrm{Cl}$ (Fisher, reagent); methanol (Baker and Adamson Special Reagent Code 1217). Compound II (Peninsular Chemical Research, Inc., 99%) was used without further purification, while the remaining cyclic polyethers (I, III, and IV) were synthesized in our laboratories from reagent grade chemicals using the following procedures.
Compound I was prepared from catechol and 1.11-dichloro-$3,6,9$-trioxaundecane ${ }^{2 b}$ using the procedure given by Pedersen; ${ }^{2 b} \mathrm{mp}$
$79-79.5^{\circ} \mathrm{C}$ (lit. $.^{26} 79-79.5^{\circ} \mathrm{C}$). Compound III was prepared from catechol and 1,2-bis(2-chloroethoxy)ethane (Eastman) with potassium hydroxide as base, following the procedure used by Pedersen; ${ }^{26}$ $\mathrm{mp}, 102-103{ }^{\circ} \mathrm{C} \cdot{ }^{10} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.85(\mathrm{~s}, 8 \mathrm{H}), 3.91(\mathrm{~m}, 8 \mathrm{H}), 4.18$ $\left(\mathrm{m}, 8 \mathrm{H}\right.$), and 6.91 ($\mathrm{s}, 8 \mathrm{H}$). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{8}: \mathrm{C}, 64.27 ; \mathrm{H}$, 7.19. Found: C, 64.17; H, 7.06.

The preparation of compound IV was accomplished using the following procedures. A mixture of $20 \mathrm{~g}(0.1 \mathrm{~mol})$ of catechol mono-2tetrahydropyranyl ether, ${ }^{11} 12 \mathrm{~g}$ of sodium hydroxide, and 50 ml of dimethyl sulfoxide was stirred under nitrogen at room temperature for I h. 1,11-Dichloro-3,6,9-trioxaundecane ${ }^{2 b}$ ($35 \mathrm{~g}, 0.15 \mathrm{~mol}$) was slowly added and the mixture was stirred at room temperature for an additional 3 h . Water was added to dissolve the solid and the mixture was extracted with diethyl ether. The ether extract was condensed to $100 \mathrm{ml}, 50 \mathrm{ml}$ of 7 M HCl was added, and the mixture was stirred overnight. The aqueous layer was separated, washed with ether, and the combined ether layers were washed with a 10% aqueous NaOH solution. The NaOH extract was saturated with CO_{2} and continuously extracted with ether in a liquid-liquid extractor. The ether extract was dried over anhydrous MgSO_{4} to give 23.0 g (89% yield) of residue which gave a positive test for phenol and exhibited one large peak in the vapor-phase chromatograph. The residue was stirred with 10.3 g of NaOH in 50 ml of dimethyl sulfoxide for 30 min . $1,2-\operatorname{Bis}(2-$ chloroethoxy) ethane ($25.5 \mathrm{~g}, 1.5$ equiv, 0.13 mol) was added dropwise and the mixture was stirred for an additional 3 h . Water was added to dissolve the solid and the aqueous solution was extracted with ether to give a $4: 1$ mixture of 1,2 -bis(2 -chloroethoxy)ethane and IV. The aqueous layer was further extracted with heptane continuously in a liquid-liquid extractor. The heptane extract, upon cooling, gave white crystals. Recrystallization from ether-hexane yielded 6.4 g of IV: mp $81.5-82.0^{\circ} \mathrm{C}$; NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{~s}, 12 \mathrm{H}), 3.96(\mathrm{~m}, 8 \mathrm{H}), 4.18$ (m, 8 H), and 6.90 (s. 8 H). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{9}: \mathrm{C}, 63.40 ; \mathrm{H}$. 7.37. Found: C, 63.48; H, 7.50.

Solution Preparation. The solvents were prepared from weighed amounts of methanol and boiled, doubly distilled water. Salt solutions ($0.004-0.008 \mathrm{M}$ or $0.15-0.25 \mathrm{M}$) were prepared by dissolving the appropriate weight of each salt in the methanol-water solvents. The $\mathrm{NaCl}, \mathrm{KCl}, \mathrm{RbCl}$, and CsCl salts were dried at $120^{\circ} \mathrm{C}$ for 24 h prior to weighing. The $\mathrm{Pb}\left(\mathrm{ClO}_{4}\right)_{2}$ solution was standardized gravimetrically by precipitation of PbCrO_{4}. The SrCl_{2} and CaCl_{2} solutions were standardized by Mohr titration. The BaCl_{2} solution was standardized volumetrically by observing the end point when a solution of barium "rhodizonate" was converted to barium sulfate.

The cyclic polyether solutions were prepared by dissolving known weights of I, II, III, and IV in the appropriate solvent to give final concentrations of 0.1 or 0.01 M .

Procedure and Calculations. The calorimetric determinations were made at $25^{\circ} \mathrm{C}$ using a Tronac precision titration calorimeter (Tronac, Inc., Orem, Utah). ${ }^{12-15}$ The cyclic polyether solutions were titrated into the metal ion solutions whenever possible. However. in the cases of 111 and IV, where the solubilities of the cyclic polyethers were not sufficient to give measurable results, the procedure was reversed and the metal ion solutions were titrated into the cyclic polyether solutions. Heat of dilution corrections were made by titrating solutions of the cyclic polyether or metal ion solutions into the solvent.
The method used to calculate $\log K$ and ΔH values from the calorimetric data using a nonlinear least-squares technique has been described. ${ }^{16}$ In most cases, the equation

$$
\begin{equation*}
\mathrm{M}^{n+}+\mathrm{L}=\mathrm{ML}^{n+} \quad \beta_{1}=K_{1}=\left[\mathrm{ML}^{n+}\right] /\left[\mathrm{M}^{n+}\right][\mathrm{L}] \tag{1}
\end{equation*}
$$

was found to adequately describe the reaction occurring in the calorimeter. However, for the reaction of K^{+}with 1 in 60,70 , and 80% $\mathrm{CH}_{3} \mathrm{OH}$ and Rb^{+}with I in $70 \% \mathrm{CH}_{3} \mathrm{OH}$, eq 1 did not adequately describe the experimental data. Use of eq 1 and

$$
\begin{equation*}
\mathrm{M}^{n+}+2 \mathrm{~L}=\mathrm{ML}_{2}{ }^{n+} \quad \beta_{2}=K_{1} K_{2}=\left[\mathrm{ML}_{2}{ }^{n+}\right] /\left[\mathrm{M}^{n+}\right][\mathrm{L}]^{2} \tag{2}
\end{equation*}
$$

gave results in all cases which could be satisfactorily fitted to the experimental heat values. However, there was not sufficient heat generated in the titration of K^{+}with I in $60 \% \mathrm{CH}_{3} \mathrm{OH}$ (because of low solubility of I) to allow calculation of reliabie $\log \beta_{1}$ and $\log \beta_{2}$ values. Data coilected by the reverse titration of I with K^{+}, where the heat is not limited by solubility, are not sensitive to the presence of $1: 2$ species; hence, no $\log \beta$ values were calculated for the $\mathrm{K}^{+}-1$ system in $60 \% \mathrm{CH}_{3} \mathrm{OH}$. Log β_{1} values for the $\mathrm{Na}^{+}-\mathrm{I}$ system at $70 \mathrm{wt} \%$ $\mathrm{CH}_{3} \mathrm{OH}$ calculated from heat data obtained using either Na^{+}or 1 as

Table I. Log $\beta_{i}, \Delta H_{i}$, and ΔS_{i} Values for the Interaction of Cyclic Polyether Compounds with Several Univalent and Bivalent Metal lons at $25^{\circ} \mathrm{C}$ and $\mu=0.1^{a}$

Ligand	M^{n+}	Solvent composition, wt $\% \mathrm{CH}_{3} \mathrm{OH}$ in $\mathrm{H}_{2} \mathrm{O}^{b}$	$\log \beta_{i}$	i	$\begin{gathered} \Delta H_{i} \\ \mathrm{kcal} / \mathrm{mol} \end{gathered}$	$\begin{gathered} \Delta S_{1}, \text { cal/ } \\ \text { (deg mol) } \end{gathered}$
1	Na^{+}	0	$0.4{ }^{\text {c }}$			
		20	0.72 ± 0.03	1	-1.77 ± 0.02	-2.6
		40	1.17 ± 0.12	1	-2.63 ± 0.11	-3.5
		60	1.64 ± 0.04	1	-3.78 ± 0.08	-5.2
		70	1.99 ± 0.10	I	-3.82 ± 0.07	-3.7
		80	2.26 ± 0.02	1	-8.32 ± 0.03	-17.6
	K^{+}	0	0.38 ± 0.10	1	-2.33 ± 0.10	-6.1
		20	1.20 ± 0.10	1	-1.8 ± 0.2	-0.5
		40	1.92 ± 0.04	1	-2.51 ± 0.03	0.4
		70	1.5 ± 0.3	1	d	
			4.15 ± 0.02	2	-13.9 ± 0.2	-27.6
		80	2.2 ± 0.2	1	d	
			4.80 ± 0.05	2	-15.50 ± 0.13	-30.0
	Rb^{+}	70	1.8 ± 0.2	1	d	
			3.77 ± 0.05	2	-12.0 ± 1.5	-23.5
	Cs ${ }^{+}$	70	1.70 ± 0.01	1	-2.43 ± 0.05	-0.4
	$\mathrm{NH}_{4}{ }^{+}$	70	e			
	$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$	70	e			
	Pb^{2+}	70	2.04 ± 0.01	1	-5.11 ± 0.02	-7.8
	$\mathrm{Co}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}$	70	e			
11	$\mathrm{Na}+$	70	2.76 ± 0.02	1	-4.89 ± 0.01	-3.8
	K^{+}	70	4.33 ± 0.05	1	-9.68 ± 0.01	-12.7
	Rb^{+}	70	3.46 ± 0.10	1	-9.27 ± 0.05	-15.3
	Cs^{+}	70	2.84 ± 0.01	1	-8.09 ± 0.01	-14.1
	Ca^{2+}	70	2.51 ± 0.02	1	-4.27 ± 0.02	-2.8
	Sr^{2+}	70	5.0 ± 0.1	1	-7.49 ± 0.01	-2.5
	Ba^{2+}	70	$6.0{ }^{\prime}$	1	-10.66 ± 0.01	-8.5
	Pb^{2+}	70	6.51	1	-9.19 ± 0.01	-1.1
III	Na^{+}	70	1.54 ± 0.01	I	-7.75 ± 0.02	-18.9
	K^{+}	70	2.42 ± 0.01	1	-8.54 ± 0.01	-17.6
	Rb^{+}	70	2.55 ± 0.01	1	-8.72 ± 0.02	-17.6
	Cs^{+}	70	2.48 ± 0.01	1	-8.93 ± 0.02	-18.6
iv	Na^{+}	70	1.50 ± 0.01	1	-11.74 ± 0.01	-32.5
	K^{+}	70	2.86 ± 0.01	1	-9.50 ± 0.01	-18.8
	Cs^{+}	70	1.42 ± 0.02	,	-6.14 ± 0.06	-14.1

[^0]titrant were the same within experimental uncertainty, indicating that only one species is present in this case.

Results

The results of the study are given in Table I. $\log \beta_{i}, \Delta H_{i}$, and ΔS_{i} values are given where the heat generated was sufficient to allow these quantities to be calculated or where they could be estimated by other means. The mixing of Na^{+}and I in aqueous solution did not produce sufficient heat to allow calculation of a K value. However, extrapolation of the plot of $\log \beta_{1}$ for the $1: 1 \mathrm{Na}^{+}-\mathrm{I}$ reaction vs. the reciprocal of the solvent dielectric constant. D. (Figure 1) allows the estimation of $\log K$ for aqueous solution as 0.4 . The reactions of Ba^{2+} and Pb^{2+} with II in $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ were quantitative and we were unable to calculate $\log \beta_{1}$ values from the calorimetric data. An estimate of the $\log \beta_{1}$ values for these reactions was made from the plot of $\log K$ vs. cation radius given in Figure 2. In this plot, a nearly constant difference is seen between the $\log \beta_{1}$ values in aqueous and $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ solvent for reaction 1 where $\mathrm{L}=1 I$. Assuming that similar differences exist in the cases of Ba^{2+} and Pb^{2+} in going from $\mathrm{H}_{2} \mathrm{O}$ to $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$, values of $\log K$ in $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ for the reaction of these cations with II are estimated to be 6.0 and 6.5 , respectively.

The β_{1} values for K^{+}-I interactions in 70 and $80 \mathrm{wt} \%$ $\mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{Rb}^{+}-\mathrm{I}$ interaction in $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ have large uncertainties associated with them. The uncertainty in β_{1} in each case originates in the attempt to apportion the β_{2} values between their constituent K_{1} and K_{2} values where $K_{2}>K_{1} .{ }^{17}$ Because of the uncertainties in the consecutive constants. no attempt was made to calculate ΔH_{i} values for the consecutive reactions.

Discussion

Medium Effect on Stability and Stoichiometry of Benzo-15-Crown-5 Complexes. The free energy change for the electrostatic process involving a separation of charged species in a dielectric medium is inversely related to the dielectric constant. ${ }^{18}$ If the bonding between uncharged cyclic polyethers and charged cations is electrostatic in nature, as has been suggested, ${ }^{2,8}$ one might expect to see a similar dependence of the free energy change on the dielectric constant of the solvent. The plot in Figure 1 of $\log \beta_{1}$ vs. $1 / D$ is nearly linear, suggesting large electrostatic contributions as would be expected for the binding of Na^{+}and K^{+}to this ligand. Above 60 $\mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH} 1: 2 \mathrm{~K}^{+}$complexes are formed. $\log \beta_{1}$ data for

Figure 1. Plot of $\log \beta_{1}$ for the reaction $\mathrm{M}^{+}+\mathrm{L}=\mathrm{ML}^{+}(\mathrm{L}=$ benzo-15-crown-5) vs. the reciprocal of the dielectric constant.
these complexes are not included in Figure 1, since factors other than the dielectric constant, such as selective cation solvation, solvent structure changes, and ion pairing, may become important for these systems.
The heat produced from the interaction of Na^{+}with I in aqueous solution was not large enough to calculate $\log \beta$ and ΔH values, although extrapolation of the data in Figure 1 indicates that $\log \beta_{1}$ is approximately the same for the Na^{+}and K^{+}complexes. This result is consistent with the finding ${ }^{4}$ that $\log K_{1}$ values for the reaction in aqueous solution of Na^{+}and K^{+}with 15 -crown- 5 are nearly the same (0.70 and 0.74 , respectively).

There is a marked increase in ΔH_{1} for the reaction of Na^{+} with I in going from 70 to $80 \% \mathrm{CH}_{3} \mathrm{OH}$. Although there is no evidence for $1: 2$ complex formation as is the case with K^{+}in solvents with more than $60 \% \mathrm{CH}_{3} \mathrm{OH}$, this large increase in ΔH_{1} must reflect changes occurring in the structure of the solvent mixture or in the solvation properties of the cyclic polyether and cation at this solvent composition.
Medium Effect on Stabilities of 18-Crown-6 Complexes. Log β_{1} values for the reaction of II with uni- and bivalent cations in aqueous solution have been published. ${ }^{4}$ The results in Table I allow comparisons to be made between $\log \beta_{1}$ values valid in aqueous and $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ solvents. The $\log \beta_{1}$ values are plotted in Figure 2, where it is seen that the curves generally are parallel, but shifted approximately $2.0 \log \beta_{1}$ units higher in the methanol solvent. The positions of maximum stability for each charge type remain approximately the same. As the methanol fraction of the solvent increases. the quantity of heat liberated per mole and the $\log \beta_{1}$ values (Figure 1) both increase for Na^{+}. The interaction of K^{+}with I shows similar behavior with the exceptions that sufficient heat is generated in aqueous solution to estimate a $\log \beta_{1}$ value, and 1:2 complexes are formed between K^{+}and I in 70 and $80 \% \mathrm{CH}_{3} \mathrm{OH}$ solvents. The selectivity of benzo-15-crown-5 for K^{+}over Na^{+} increases as wt $\% \mathrm{CH}_{3} \mathrm{OH}$ increases in these $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ solvents. Similar results are reported by Lehn and Sauvage ${ }^{19}$ for the case of Na^{+}and K^{+}interaction with several cryptates, selectivity by these ligands for K^{+}being greater in 95% $\mathrm{CH}_{3} \mathrm{OH}$ than in water. The structure of the $1: 2$ complex formed between K^{+}and I in 70 and $80 \% \mathrm{CH}_{3} \mathrm{OH}$ is not known. However, it is likely that a "sandwich" type arrangement exists with the K^{+}located between the two ligands as has been observed for the $1: 2$ potassium iodide-benzo- 15 -crown- 5 crystal. ${ }^{20}$ The calorimetric data for the reaction of K^{+}with cyclic polyethers having larger ring sizes, II, III, and IV, show only

Figure 2. Plot of $\log \beta_{1}$ for the reaction $\mathrm{M}^{n+}+\mathrm{L}=\mathrm{ML}^{n+}\left(\mathrm{M}^{+} \ldots, \mathrm{M}^{2+}\right.$ -, $\mathrm{L}=18$-crown-6) in aqueous and $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ solvents. An asterisk denotes an estimated value, see text.

1:1 complexes, suggesting that in these ligands, the K^{+}is positioned in the polyether cavity. It is not apparent why a $1: 2$ complex does not form in the case of the Cs^{+}-I interaction in the 70% methanol solvent. However, since the experimental data were adequately fit by reaction 1 alone, the contribution from reaction 2 is assumed to be small in this case.

Comparison of ΔH_{1} and ΔS_{1} values for univalent ($\mathrm{Na}^{+}, \mathrm{K}^{+}$, $\left.\mathrm{Rb}^{+}, \mathrm{Cs}^{+}\right)$and bivalent $\left(\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\right)$ cation interaction with II in aqueous ${ }^{4,21}$ and $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ solvents shows that, with the exceptions of Rb^{+}and Cs^{+}, the increase in $\log \beta_{1}$ is almost entirely due to an increasingly favorable ΔH_{1} change, the change in ΔS_{1} going from aqueous to $70 \% \mathrm{CH}_{3} \mathrm{OH}$ solvent composition remaining essentially constant. In the cases of Rb^{+} and $\mathrm{Cs}^{+},-\Delta S_{1}$ changes of 10 and $6 \mathrm{cal} /(\operatorname{deg~mol})$, respectively, are seen compared to $0,1.2,2.1,2.1$, and 3.1 for Na^{+}. $\mathrm{K}^{+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, and Pb^{2+}, respectively. Values of ΔS_{l} for the $70 \% \mathrm{CH}_{3} \mathrm{OH}$ solvent were more negative than those in the aqueous solvent in all cases.

Previous studies ${ }^{4,21}$ have shown that entropy changes for $1: 1$ metal complexation with 15 -crown-5 and 18 -crown-6 in aqueous solution are generally small ($<-10 \mathrm{cal} /(\mathrm{deg} \mathrm{mol})$) and negative. Several factors contribute to ΔS, including relative contributions of cation and ligand dehydration, and ligand conformation changes upon complexation. In the small ring compounds, ligand conformation changes are likely small and the small ΔS_{1} changes suggest that the solvation effects are also minimal. However, there should be an increase in ring flexibility with increasing free ligand ring size, resulting in more negative $\Delta S_{\text {। }}$ values upon complexation. The data in Table I are generally consistent with this expectation. For example, comparison of ΔS_{1} values valid in $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ for formation of $1: 1$ complexes of Na^{+}, shows ΔS_{1} to be nearly constant for I and II, but to be markedly more negative for the larger ring compounds III and IV. The small ΔS_{1} values in the cases of I and II suggest that the structures of these ligands are relatively rigid and do not lend themselves to significant conformational changes. This observation is consistent with the x-ray structure observed by Bush and Truter for the $\mathrm{Na}^{+}-\mathrm{I}$ complex. ${ }^{22}$ Values of $\Delta S_{\text {, for the reaction of } \mathrm{Na}^{+} \text {with II and }}$ other 18 -crown- 6 and 15 -crown- 5 ligands in aqueous solution are likewise numerically small $(<-10 \mathrm{cal} /(\operatorname{deg~mol})) .{ }^{4}$ The ΔS_{1} values for the reactions of III and IV with Na^{+}are substantially more negative, suggesting that significant conformational changes may be important in the formation of these complexes.

Figure 3. Plot of $\log \beta_{1}$ for the reaction $M^{n+}+L=M L^{n+}$ for several cation pairs in $\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{OH}$ solvents.

Effect of Ring Size and Solvent Composition on Complex Stability. The absence of a reaction between the alkaline earth metal ions- $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, and Ba^{2+}-and benzo-15-crown-5 in $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ is interesting, since these cations react with 18 -crown-6 in this solvent and with 15 -crown- 5 in aqueous solution. ${ }^{4}$ Change in solvent composition from water to water-methanol mixtures results in different cation selectivity patterns for 15 -crown- 5 and 18 -crown- 6 ligands. These differences are seen in part in Figures 1 and 2 and are further illustrated in Figure 3, where $\log \beta_{1}$ values for 1:1 reactions of several pairs of cations with 18 -crown- 6 and benzo- 15 -crown- 5 (15 -crown-5 in the case of Sr^{2+}, Figure 3b) are compared. There is a regular increase for either the $\mathrm{Na}^{+}, \mathrm{K}^{+}$or $\mathrm{Na}^{+}, \mathrm{Sr}^{2+}$ pair in the case of 18 -crown- 6 , but for benzo- 15 -crown- 5 differentiation between either K^{+}and Na^{+}or Sr^{2+} and Na^{+}is enhanced in the $\mathrm{CH}_{3} \mathrm{OH}$ solvent. This is especially true of the $\mathrm{Na}^{+} / \mathrm{Sr}^{2+}$ case where selectivity of Na^{+}over Sr^{2+} (or other alkaline earth cations) is markedly enhanced by increasing the fraction of the $\mathrm{CH}_{3} \mathrm{OH}$ component of the solvent.

Pedersen ${ }^{2 b}$ observed that a complex is more stable (higher $\log \beta$ value) the greater the number of potential coordination sites in the ring, provided the sites are coplanar and symmetrically distributed. The two ligands in the present study which fit these requirements are I and II, ligand III (and presumably IV as well) being cylindrically symmetrical according to Pedersen. The $\log \beta_{1}$ values for I and II (Table I) confirm Pedersen's statement.

Examination of the ΔH_{1} data for the reaction of $\mathrm{Na}^{+}, \mathrm{K}^{+}$, and Cs^{+}with I and II in $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ show $-\Delta H_{1}$ to become more positive in the case of each cation with an increase of one donor atom in the polyether ring as would be expected if the magnitude of ΔH_{1} is related to the number of metaldonor atom bonds. The larger ring compounds do not show a corresponding increase in ΔH_{1} with ring size except in the case of Na^{+}. The ΔH_{1} and ΔS_{1} data in Table I taken together.
however, show interesting and consistent changes as a function of ligand cavity size (15 -crown- 5 through 27 -crown- 9) for the alkali metal ions. Between $\mathrm{H}_{2} \mathrm{O}$ and $70 \mathrm{wt} \% \mathrm{CH}_{3} \mathrm{OH}$ there is a large change in $\Delta H_{1}(-3.82$ to -11.74$)$ and in $\Delta S_{1}(-3.7$ to -32.5) for the case of Na^{+}, which is consistent with the change which might be expected from an increase in cavity size with a consequent increase in the number of donor atoms and in ligand flexibility. This observation is interesting in connection with x -ray crystallographic data for the K^{+}-dibenzo30 -crown-10 complex, where extensive ligand conformation change between the complexed and uncomplexed ligand is found. ${ }^{22}$ Of the two cations, Na^{+}has the greater charge density and the ΔH_{1} and ΔS_{1} values in Table I suggest that it may be more effective than K^{+}in ordering the large cyclic polyether ring. With the 27 -crown 9 ring, the largest negative ΔH_{1} and ΔS_{1} values are found with Na^{+}, the latter quantity indicating that a greater ligand conformation change is required to accommodate the smaller alkali metal ion. The favorable ΔH_{1} value, however, is more than balanced in the case of Na^{+}by the large negative ΔS_{1} value resulting in a smaller $\log \beta_{1}$ value (1.50) than that (2.76) found for formation of the $\mathrm{K}^{+}-18$ -crown- 6 complex. The need for large conformational changes to accommodate the cation with correspondingly large negative ΔS_{1} changes in the case of the more electronegative $\mathrm{Na}{ }^{+}$could account for the large selectivity of K^{+}over Na^{+}by macrocyclic compounds of large ring size such as valinomycin and nonactin. ${ }^{8}$ For example, the difference in the $\log K$ values for the interaction in $\mathrm{CH}_{3} \mathrm{OH}$ of K^{+}and Na^{+}with valinomycin is 4.3, while the corresponding difference in the $\log K$ values for the reaction of these cations with the relatively inflexible di-benzo- 18 -crown- 6 is 0.3^{23}

References and Notes

(1) (a) Presented in part at the First Fall Organic Conference, Division of Organic Chemistry, Sept 30-Oct 3, 1973. North Falmouth, Mass., and at the 166th National Meeting of the American Chemical Society, Division of Inorganic Chemistry, March 31-April 5, 1974, Los Ageles, Calif. (b) Supported by National Science Foundation Grant GP-33536X and National Institutes of Health Grant GM 18811. Taken in part from the Ph.D. Dissertations of D.P.N. (1971) and R.E.T. (1976), Brigham Young University.
(2) (a) C. J. Pedersen, J. Am. Chem. Soc., 89, 2495 (1967); (b) ibid., 89, 7017 (1967); (c) ibid., 92, 386 (1970); (d) ibid., 92, 391 (1970).
(3) J. J. Christensen, D. J. Eatough, and R. M. Izatt, Chem. Rev., 74, 351 (1974).
(4) R. M. Izatt, R. E. Terry, B. L. Haymore, L. D. Hansen, N. K. Dalley, A. G. Avondet, and J. J. Christensen, J. Am. Chem. Soc., preceding paper in this issue.
(5) R. M. Izatt, L. D. Hansen, D. J. Eatough, J. S. Bradshaw, and J. J. Christensen, 9th Jerusalem Symposia on Quantum Chemistry and Biochemistry, in press.
(6) R. M. Izatt, D. J. Eatough, and J. J. Christensen, Struct. Bonding, 16, 161 (1973).
(7) J. M. Lehn, Struct. Bonding, 16, 1 (1973).
(8) W. Simon, W. E. Morf, and P. C. Meier, Struct. Bonding, 16, 113 (1973).
(9) E. Pretsch, D. Ammann, and W. Simon, Res./Dev., 25 (3), 20 (1974).
(10) The melting point for this compound as originally published by Pedersen, ${ }^{20}$ $113-114^{\circ} \mathrm{C}$. is incorrect; the true value determined by him is $103-104$ ${ }^{\circ} \mathrm{C}$, (see C. J. Pedersen in "Synthetic Multidentate Macrocyclic Compounds", R. M. Izatt and J. J. Christensen, Ed., Academic Press, New York, N.Y., in preparation).
(11) W. E. Parham and E. L. Anderson, J. Am. Chem. Soc., 70, 4187 (1948).
(12) J. J. Christensen, R. M. Izatt, and L. D. Hansen, Rev. Sci. Instrum., 36, 779 (1965).
(13) J. J. Christensen, D. J. Eatough, J. Ruckman, and R. M. Izatt, Thermochim. Acta, 3, 203 (1972).
(14) D. J. Eatough, J. J. Christensen, and R. M. Izatt, Thermochim. Acta, 3, 219 (1972).
(15) L. D. Hansen, T. E. Jensen, S. Mayne, D. J. Eatough, R. M. Izatt, and J. J. Christensen, J. Chem. Thermodyn., 7, 919 (1975).
(16) D. J. Eatough, R. M. Izatt, and J. J. Christensen, Thermochim. Acta, 3, 233 (1972).
(17) L. D. Hansen and D. J. Temer, Morg. Chem., 10, 1439 (1971).
(18) H. S. Harned and B. B. Owen, "The Physical Chemistry of Electrolyte Solutions'", 3d ed, Reinhold, New York, N.Y., 1958, p 652.
(19) J. M. Lehn and J. P. Sauvage, J. Am. Chem. Soc., 97, 6700 (1975).
(20) P. R. Mallinson and M. R. Truter, J. Chem. Soc., Perkin Trans. 2, 1818 (1972).
(21) R. M. Izatt, D. P. Nelson, J. H. Rytting, B. L. Haymore, and J. J. Christensen, J. Am. Chem. Soc., 93, 1619 (1971).
(22) M. A. Bush and M. R. Truter, J. Chem. Soc., Perkin Trans. 2, 345 (1972).
(23) Y. A. Ovchinnikov, V. T. Ivanov, and A. M. Shkrob, "Membrane Active Complexones", Elsevier, New York, N.Y., 1974.

[^0]: "Values are the averages taken from four to six determinations. The uncertainties are given as the standard deviation of the mean. ${ }^{b}$ These solutions have the following dielectric constants: 0% (78): 20% (70); 40% (61); $60 \%(52) ; 70 \%$ (47); 80% (43); and 100% (33). ' Estimated from data in Figure 1, see text. ${ }^{d}$ No value calculated, see text. ${ }^{e}$ No significant a mount of heat was produced, indicating that either $\Delta H=$ 0 or no significant amount of reaction took place. ${ }^{f}$ Estimated from data in Figure 2, see text.

